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Irreversibility resulting from contact with a heat bath caused by the finiteness of the system
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When a small dynamical system that is initially in contact with a heat bath is detached from this heat bath
and then caused to undergo a quasi-static adiabatic process, the resulting statistical distribution of the system’s
energy differs from that of an equilibrium ensemble. Subsequent contact of the system with another heat bath
is inevitably irreversible, hence the entire process cannot be reversed without a net energy transfer to the heat
baths.
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I. INTRODUCTION not reversible, it is called “irreversible.”
Reversibility, therefore, implies that the statistical average

Ordinary thermodynamics assumes the extensivity of thef the work needed for the proce$3,,a,;T,,a,} is the
system in question, and it is not applicable directly to finiteopposite of that for the procedd,,a,;T;,a;}. In macro-
systems. Hill[1] developed a framework to deal with sys- scopic systems, reversibility holds if and onlyTi§ is equal
tems that are moderately large and homogeneous, except far the temperature of themacroscopit system after opera-
their boundaries. In this framework, the corrections to thetion (iii ). This fact is a prerequisite for the existence of ther-
thermodynamic behavior due to the the effect of the surfacemodynamics, in which the Helmholtz free energy can be
and the edges of the system are incorporated in the form afsed to relate equilibrium states at different temperatures.
an expansion in the number of the constituent atdsaur  For small systems, however, the situation is completely dif-
interest here is in systems further removed from the thermoferent:
dynamic limit, such as mesoscopic devices and molecular StatementThe processe$T;,a;;T,,a,} for small sys-
motors, which are intrinsically small and heterogeneous antems are irreversible, except for some “special” cases.
for which the method of Refl] is not sufficient. Hereatfter, It is important to note that for small systems we cannot
we call such systems “small systems.” define the temperature unambiguously, at least when they are

In this paper our purpose is to elucidate the distinctiveisolated, and the energy of the system at the end of operation
nature of small systems by considering the following pro-(ii) is a strictly statistical quantityThis is related to the fact
cess, which we denote Hy';,a;;T,,a,} (see Fig. 1 that the operation of removing the thermal contact is intrin-

(i) First, a small system is in thermal contact with a heatsically irreversible, however small the work associated with
bath of temperaturd,. (Throughout this paper we assume this operation. In order to understand intuitively how these
that both the interaction energy associated with the thermdkatures of small systems lead to irreversibility, we first de-
contact and the work required to change this contact are negcribe qualitatively what happens in the procegsesiv).

ligibly small [2].) In (i), the energyE of the small system fluctuates, and its
(i) We then gradually remove the thermal contact be-statistics obey the canonical ensemble at temperdturén
tween the system and the heat bath. (i), the energy of the system is fixed at a particular value.

(iii) Next, we change some arbitrary control parameter ofThis energyE is a stochastic variable, and its distribution is
the systema, from its initial valuea,; to a new valuea, given by the canonical ensemble at temperafiureas long
quasistatically We measure the work required to make thisas the removal of the thermal contact with the heat bath is
change as the increase of the energy of the small system. sulfficiently gentlg2]. In (iii), the energy of the small system

(iv) Finally, we gradually establish a thermal contact be-changes in such a manner that the phase volume enclosed by
tween the system and the second heat bath of temperatuseconstant energy surfac#E,a), [see Eq(22) in the texi

Ts. is invariant. This follows from the ergodic invariant theorem
We now introduce the concept of the “reversibility” as- [3]. With the exception of those systems for whig{E,a)
sociated with the procedd,a,;T,,a,}. has a special functional property, the statistical distribution

Definition The proces$T,,a,;T,,a,} is called “revers-  of E at the end of this adiabatic process is no longer consis-
ible” if no net energy is transferred, on the statistical averageent with the canonical ensembleaty temperature. Iriv),
over infinite number of repetitions, from or to either heatthis noncanonical distribution of the energy relakesvers-
bath through the composite processe$™of,a,;T,,a,} fol- ibly (in the ordinary sengeto the canonical distribution at
lowed by{T,,a,;T;,a,}. If the processT,,a;;T,,a,} is  the temperatur@,, whether or not, on statistical average, the
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(1) (i) (iii) (iv)
T

FIG. 1. The  process
{T1,a1;T,,a,} is schematically
depicted as (B (ii) = (iii) = (iv).

The gray boxes represent the heat
baths at the temperatures indicated
—) —) —) therein, and the circles represent
the small system. The thick solid
lines in (i) and (iv) denote the
T

thermal contact between the small
system and the two heat baths.

net energy transfer between the system and the heat bathvgereq andp are the position coordinates and the momenta
zero. We note that the essential feature distinguishing smatif the system, respectively, and we have introduced here the
systems from macroscopic systems is the distortion of theelocity of the system point in the phase spa¢g; . The
energy distribution in(iii), which can be neglected in mac- velocity V- ) satisfies

roscopic thermodynamics.

In the following sections we prove the above statement _
with an argument based on the ergodicity hypothesis of 5_FV(F~0_O’
Hamiltonian dynamical systems. The outline of the proof is
as follows. In Sec. Il we prove the three lemmas as preparawvhich can be checked by the equation of motion of the me-
tory steps for the main statement. In Sec. Ill we prove thechanical system.
main statement. In Sec. IV we discuss the physical meaning Using Eq.(2), we evaluate the time derivative of the en-
of the Statement. We also show there the necessary conditigropy S

for the procesgT;,a;;T,,a,} to be reversible.
g P(- 1] J dP(I",t) d(xInx)
{r'}

2

dr
x=P(I',t)

ot ot dx
Il. THREE LEMMAS

In order to prove the Statement, we first introduce three :f Vi yP(T,0)INP(T,1H)dS,
lemmas. Sp

Lemma +-The entropyS (see below remains invariant )
in the processiii ). PyS ( W where the symba§ represents the surface integral over the

Proof. We consider an ensemble of the mechanical systerit"face enclosing the phase space and we have use@)Eq.

which is described by a time-dependent HamiltorfirLet f’and performgd the integration by parts. As we are inte_reste_d
us denote byP(I',t) the normalized distribution function of N @ mechanical system such that all particles are confined in
the ensemble at timg wherel is the phase coordinates of a finite region in position space and that the Har_nlltoman

the system, i.e., the position coordinates and the momenta jvOIves the kinetic energy terngs’/2m,  P(I',t) vanishes

the system. The entrop§ is defined as, a functional of the &t @ny point orSyy. The lemma applies to the process),
normalized distributiorP, since a quasistatic adiabatic process is realized by a time-

dependent Hamiltonian.
Lemma 2—A canonical distribution is the distribution to

maximize the entropys subject to the constraint that the
SIP(-, )=~ J{F}P(F,t)ln P(I',t)dI’, (1) ensemble average of the energyEisi.e.,
. _ _ f H()P(IN)dI'=E, )
where the symbd|I"} indicates that the integral is taken over {r}

the whole phase space. ) o . .
Let us now examine the behavior of the entrdpyvith where the canonical distribution characterized by the Hamil-

time. First, we note that the time evolution of the distributiontonianH and the temperature is defined as

function is described by the so-called Liouville’s equation, o HOT
Pc(F;T,H)EW, 4
dP(I',t) d oH(I',t) 0 oH(T,1)
. lag ap  p g P(T',t) with Z(T,H) being the normalization constant,
d
=_ Z(T,H =f e HOVTgr, 5
(91—* [V(F,t)P(Flt)]l ( ) {F} ( )
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Proof. Let us examine the difference between the entro\We note that the temperatuileis positive in most physical
pies of two distributions, the canonical distributiéy and  situations. Indeed, for the Hamiltonian involving the kinetic
any other distributiorP, both being normalized and satisfy- terms,T must be positive to satisfy the normalization condi-
ing the constraint conditioB). We find tion of the canonical distribution. Thus, the right-hand side

of Eq. (9) is positive.
= f ml P dr 6
SPel=SP] {F}P( ) nI:’C(F) ' ®) Ill. PROOF OF THE STATEMENT
Let us consider an ensemble of the small systems whose
Hamiltonian isH,, wherea is a parameter controlled from
the outside. We shall analyze the two processes for the en-
f PC(F)dl“:f P(I')dl'=1, semble{T;,a;;T,,a,} and its inversgT,,a,;T1,a,} with
{r} {ry given the values of the temperatufe and parameters,

where we have used E¢g) and the conditions

anda,. A temperaturdl, is to be determined so that the heat
j H(F)PC(F)dF=f H(T)P(T)dl =E. bath of the temperatur€, receives no energy from the en-
(T} (T} semble of the small systems during the procéss of
{T{,a1;T,,a,}. First;, we consider the process
We have written here the canonical distributionPa¢l’) for ~ {T,,a;;T,,a,}. When detached from the heat bath of the
the simplicity of notation, though precisely it implies temperaturdl; [the processii)], the ensemble is the canoni-
P«(I";T,H) in our notation. The right-hand side of E@) is  cal ensemble characterized By and Ha,. The ensemble
known as therelative entropyand has been known to be

. X average of the energ§;,, is then given b
non-negative, as we easily demonstrate as follows: 9 9% 9 y

P(I) Er=(Ha)(r, 1) (10)
{ry ¢ When the parametea of the system is quasistatically
P(I') changed along the proce§$ ), the distribution of the sys-
ZJ P(I)Ing (F)dr_f [P(I)=P¢(I")]dl’ tems, in general, changes. The final distribution is uniquely
{y ¢ {ry determined by the adiabatic theorefWe will not write
( P(I) P(I')  P(I') down the explicit form of the distribution, since our proof
f{r}Pc(r) P(T) PLT) Po(l)

dI'=0. does not depend on the concrete form of the distributid/e
will write the distribution of the ensemble a& as
(7) Pa(F;Tl,Hal), whereT; andHal are the arguments remind-

) o ) ing us of the fact that the ensembleaat a; was the canoni-
The inequality in the last line foIIc_)ws from_ the fact that cal ensemble witiT; andH, . By our definition,P, at any
xInx—x+1=0 for x=0. The equality holds if and only if temperaturer and for an vsltlue of1 satisfies
x=1, so that only the canonical distribution realizes the P y

maximum value ofS Thus the lemma is proved. . _ .
P T,HY) =P (I';T,Hy). 11

Lemma 3-Let (H)t ) be the ensemble average of the a(liT,Ha) =Po(I5T,Ha) (D
HamiltonianH over the canonical distributioR.(I";T,H). According to Lemma 1, the entrog§ remains invariant
(Hereafter we shall denote, in general, the canonical average ring the processii )
using the distributiorP(I"; T,H) by (- ) n, that is, for an ’
arbitrary physical quantityA defined on the phase space: SP, (:T1,Ha )= P (-: T4, Ha)]. (12)
(A= AT P(T; T,H)AT). Then(H) x4y is mono- N A
tonically increasing withT. The entropyS P.(-;T,H)] is
also monotonically increasing with.

Proof. Differentiating(H) 1) with respect toT, we ob-
tain

At the end of(iii ) the ensemble average of the eneByis
expressed as

E,= f{F}HagmPaz(F;Tl,Hal>dr. (13)

IHH)rm) _((H —(H)r.1) %) (1.1)

oT T2 ®)

For the processiv), we choose the temperatufg so that

the average energy of the ensemble does not change upon the
contact with the heat bath of the temperatiiselt is because

our aim is to know whether or not the process
{T1,a1;T»,a,} can be made reversibl&, must, therefore,
satisfy

Since the value oH is indeed distributed under the canoni-
cal distribution, the right-hand side of E) is positive.

Likewise, differentiatingS[ P.(-;T,H)] with respect tdr,
we obtain

I P(-;T.H)] 1 I(H) (7 h)
aT T 49T

9) Ex=(Ha,)(r,m,)- (14)
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According to Lemma 2, the relatior{4¢3) and (14) imply reversible case as mentioned below in ELp), that is, the
only case that the canonical distribution form of the en-
S[Pa, (i T1,Ha ) ISSPc(+:T2,Ha ) ], (19  semble is preserved in the quasistatic adiabatic progiess

) ) We will discuss the condition for this to occur in the follow-
where the equality holds only if the ensemble at the end ofng section.

(iii ) is the canonical ensemble. If our system is such that the

canonical distribution is transformed into the canonical one

through the proces§ii) of {T,,a;;T,a,}, then it is also IV. DISCUSSION

true for the processiii) of {T,,a,;T;,a,}, since(iii) is a

quasistatic adiabatic and is, therefore, reversible process.
Next, we examine the proce$,,a,;T;,a,}. As above,

the processiii) yields the relation

We first note that the inequalif{2l) is fundamental in the
sense that if it were violated, we could construct a perpetual
machine of the second kind with the following hypothetical
protocol.

. _ . (1) We start from an ensemble of the small systems in
SPay T2 Hay) J= S Pa, (-T2, Ha,) ] (16 contact with a heat bath at temperatiie

(2) We detach these systermgently from the heat bath,
and change the parametarfrom a; to a, quasistatically.

_ The work necessary to make this chang&js-E; per sys-
Ei=f Ha, (I)Pa (I'; T2, Hy )dI. 17 tem.

i (3) We now fix the parameteat at a,, and introduce the
Now we ask if there is a nonzero flow of energy into the heafntéractions among these system. We assume that these inter-
bath of the temperatur, at the end ofiii) of the process actions are sufficiently smaller than the systems energy, but
{T,,8,;T;,a;} when we put the ensemble in contact with at the same time Iarg_e enough for the repartition of the en-
that heat bath. To answer this we only need to compare th@"dy Within a certain time.

value ofEi with that ofE1 since the contact with the heat (4) We remove these interactions: the ensemble of the

bath forces the ensemble to obey the canonical distributioﬁyStemS obeys the canonical distribution characterizet,by

h th = E-E. th h . and Ha,- (Note that we have not used any heat bath other
with t e_’avgage energi. 1~ Eq, then the positive -1 the initial one at the temperature.)
energy,E; — E,, flows from the ensemble to the heat bath. (5) We then slowly change the parametefrom a, back

To see if this is the case, it is convenient to introduce th = =

; wrel! which satisf o a;. The required work here iE; —E,.
emperaturel; which satisties (6) Finally, we close the cycle by bringing these small

systems into contact with the heat bath at temperafyre
If the inequality €,—E;)+ (E;—E,)<0 were to hold in

The ensemble average of the energy at the erii QfEi , IS

Ej= (Ha) (g, (18)

that is, we temporally introduce the canonical ensembldiS cycle, we could obtain the positive work;—E;

whose the ensemble energy is equsEtoThe Eqs(17) and :E;Oﬁggttgztﬁyzg?ér\;vgg::tg; only resource of the energy is
(18) imply, with Lemma 2, that Below we will derive briefly the condition that the cycle

. - T of processes discussed above become reversible. This condi-
StPa,(+iT2.Ha)) JSSPel -T2, Hay) ). (19 tion requires that the distribution remains to be the canonical
i ; one upon quasistatic adiabatic processes, see the paragraph
EZ?L?;I}EQ Egs(12), (19, (16), and(19), we arrive at the below (15). The change of the distribution in those processes
is governed by the adiabatic theor¢8i: If we denote byE,
SPe(-;T1,Ha ) 1SS P(-: Ty Ha) 1, (20) andE, the energy of the system before and after a quasistatic
! ! adiabatic process, through which the parameter changes from
where we have used the propettyl) of P,. According to @i t0 @, respectively, the “action'J(E,a) defined by
Lemma 3, this inequality20) implies

T,<T} J(E,a)zf{r}e(E—Ha(r))dr 22)
and

_ satisfies the following relationship:

E,<E]. (21
Thus we now complete the proof of the Statement: Given the J(E1,a1) =J(Ez,8,). (23

temperaturd ; and the parametees, anda,, no matter what

we choose as the temperatdrg the proces$T,,a,;T,,a,} Using Eq.(23) we can see how the energy distribution of the
or{T,,a,;T,,a;} generally requires some non-negative en-system’'s ensemble changes through such process. The en-
ergy to move from the ensemble of the small systems to thergy distribution before the proce$3(E,), is given by con-

heat baths. The special case with no energy transfer is thruction as
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e (ED/(TY) &

P(El)dEl:mW(Ebal)d Elv
il al

whereZ has been defined belo(®) andW(E,a) is defined
by W(E,a)=[dJ(E,a)]/dE. Noting that Eq.(23) and the
above definition oW(E,a) give

W(E;,a,)dE;=W(E;,a,)dE,,

the energy distribution after the procefs(E,) is given as

e E1/Ty

Z(T1 Ha)

a

P'(Ey)dE,= W(E;,a,)dE,;.

FIG. 2. Thick solid curves: The average energy of the small
This distribution corresponds to the canonical one at SOM8ystem E, as a function of the parametay along quasistatic adia-
temperature, say,, if and only if batic processes. The arrows indicate the direction of the processes.
Dotted curves: The energy of the combined system per constituent
E _ E small system along quasistatic adiabatic processes. At each extreme
T, T, point of the curves, the value of the average energy is indicated by
_ o N _ the corresponding temperature of the canonical ensemble. For ex-
is satisfied. Thus, we reach the condition for the reverS|b|I|ty:amp|e,Ti indicates thaE:<Ha1>(Ti,Hal) . At the point indicated by

the adiabatic theorert23) applied for a quasistatic adiabatic T,. the upper solid curve and the upper dotted curve are tangent,

process of the system should yield the relationship and at the point indicated Bl the lower solid curve and the lower
E,=¢(a;,a,)E; (24) dotted curve are tangent.

with ¢(a;,a,) being a function of the parameter values be-mal equilibrium of the whole connected system. Under this
fore and after the process. assumption we can prov@ot shown that the energy distri-

An example of the systems satisfying H@4) is a har-  bution of the small subsystems belonging to the connected
monic oscillator with the HamiltonianH,=p?/2+ag?/2.  system remains to be the canonical one throughout the pro-
When the spring constarat is changed quasistatically, the cess(iii).
process{T,,a;;T,,a,} is reversible. By constrast, an ex-  Furthermore the entropy related to this distribution, whose
ample that does not satisfy E@4) is given by the following  definition has been given in E¢l), is conserved during the
Hamiltonian: procesdiii ), as we can show easily by using the fact that the

distribution is kept to be canonical throughout this process.
Ha=p2/2+exp[ﬂ]. That is, along the procesgii) the canonical distribution

PC(F;TI',Ha) of the connected system at the parameter value

] a satisfies the following relationship:
The proof, not shown here, is easy.

Our proof of Eq.(21) is for the systems obeying classical
dynamics. After our work, H. Tasaki has shown that essen-
tially the same mechanism of irreversibility is found for the
systems Obeying guantum mechan[d@_ There, the proof This equality combined with Lemma 2 lmplles that, at any
has been done, just we did here, using the fact that the c&oint along the processi), the average energy of the small
nonical ensemble realizes the maximum entropy amongystems in the disconnected system is generally not smaller
those ensembles with the same average energy. We could s#@n the average energy of the small subsystems in the con-
that it is this property of the canonical ensemble that leads th€cted systerfsee Fig. 2 for the schematic illustratjoi his
the inequality(21). figure gives us the intuitive picture that the irreversibility of

In order to obtain a deeper physical insight of the inequalthe disconnected system is caused by its excess energy in
ity (21), let us compare the system that consists of infinitelyreference to the connective system which is reversible.
many small subsystems connected among each other with It is a future tOpiC of investigation to determine if we can
the system of the ensemble of mutually isolated small sysconstruct a thermodynamic framework of small systems that
tems. We shall call these two systems the “connected systan describe adiabatic processes as well as isothermal pro-
tem” and the “disconnected system,” respecti\/e|y_ As thecesses for systems in contact with heat baths. Our results
former system is macroscopic, we can apply to it the ordidimply that, in such framework, if there exists a thermody-
nary thermodynamics and therefore the procesgamic function whose difference CaICUIatEd W_Ith I’eSpeCt to
{T,,a1;T,,a,} can be made reversible for such system. Totwo states is the quasistatic adiabatic wé&rk— E4, then it
assure it we must assume that the interaction energy assignednnot be the case that this function depends on ©rdnd
to the coupling among the small subsystems is assumed to lze (This is in contrast to the case of isothermal processes for
ignorably small while it is effective enough to attain the ther-a small system in contact with a heat bath. For such pro-

SP(- ;TlvHal)]:S[Pc(‘ ;’T-Ha)]-
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cesses, using the formalism of stochastic energgfied] it (-;Tl,Hal)] is a strong measure of the distance from the cor-
has been shown that the Helmholtz free energy can be usggsponding reversible process since this is nonvanishing un-
to determine the work necessary to move between two statgsss the functionsP, (-;T;,H,) and P.(-;T,,H,) are
by changing the value o& sufficiently slowly so that the 2 ! 2
small system evolves quasistatically.

To construct the thermodynamic framework of a small
system, it is desirable to find a method of characterizing in ACKNOWLEDGMENTS
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