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Irreversibility resulting from contact with a heat bath caused by the finiteness of the system
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When a small dynamical system that is initially in contact with a heat bath is detached from this heat bath
and then caused to undergo a quasi-static adiabatic process, the resulting statistical distribution of the system’s
energy differs from that of an equilibrium ensemble. Subsequent contact of the system with another heat bath
is inevitably irreversible, hence the entire process cannot be reversed without a net energy transfer to the heat
baths.

DOI: 10.1103/PhysRevE.66.016119 PACS number~s!: 05.70.Ln
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I. INTRODUCTION

Ordinary thermodynamics assumes the extensivity of
system in question, and it is not applicable directly to fin
systems. Hill@1# developed a framework to deal with sy
tems that are moderately large and homogeneous, excep
their boundaries. In this framework, the corrections to
thermodynamic behavior due to the the effect of the surfa
and the edges of the system are incorporated in the form
an expansion in the number of the constituent atoms,N. Our
interest here is in systems further removed from the ther
dynamic limit, such as mesoscopic devices and molec
motors, which are intrinsically small and heterogeneous
for which the method of Ref.@1# is not sufficient. Hereafter
we call such systems ‘‘small systems.’’

In this paper our purpose is to elucidate the distinct
nature of small systems by considering the following p
cess, which we denote by$T1 ,a1 ;T2 ,a2% ~see Fig. 1!.

~i! First, a small system is in thermal contact with a he
bath of temperatureT1. ~Throughout this paper we assum
that both the interaction energy associated with the ther
contact and the work required to change this contact are
ligibly small @2#.!

~ii ! We then gradually remove the thermal contact b
tween the system and the heat bath.

~iii ! Next, we change some arbitrary control paramete
the system,a, from its initial valuea1 to a new valuea2
quasistatically. We measure the work required to make th
change as the increase of the energy of the small system

~iv! Finally, we gradually establish a thermal contact b
tween the system and the second heat bath of temper
T2.

We now introduce the concept of the ‘‘reversibility’’ as
sociated with the process$T1 ,a1 ;T2 ,a2%.

Definition. The process$T1 ,a1 ;T2 ,a2% is called ‘‘revers-
ible’’ if no net energy is transferred, on the statistical avera
over infinite number of repetitions, from or to either he
bath through the composite processes of$T1 ,a1 ;T2 ,a2% fol-
lowed by $T2 ,a2 ;T1 ,a1%. If the process$T1 ,a1 ;T2 ,a2% is
1063-651X/2002/66~1!/016119~6!/$20.00 66 0161
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not reversible, it is called ‘‘irreversible.’’
Reversibility, therefore, implies that the statistical avera

of the work needed for the process$T1 ,a1 ;T2 ,a2% is the
opposite of that for the process$T2 ,a2 ;T1 ,a1%. In macro-
scopic systems, reversibility holds if and only ifT2 is equal
to the temperature of the~macroscopic! system after opera
tion ~iii !. This fact is a prerequisite for the existence of th
modynamics, in which the Helmholtz free energy can
used to relate equilibrium states at different temperatu
For small systems, however, the situation is completely
ferent:

Statement. The processes$T1 ,a1 ;T2 ,a2% for small sys-
tems are irreversible, except for some ‘‘special’’ cases.

It is important to note that for small systems we cann
define the temperature unambiguously, at least when they
isolated, and the energy of the system at the end of opera
~ii ! is a strictly statistical quantity.~This is related to the fac
that the operation of removing the thermal contact is intr
sically irreversible, however small the work associated w
this operation.! In order to understand intuitively how thes
features of small systems lead to irreversibility, we first d
scribe qualitatively what happens in the processes~i!–~iv!.

In ~i!, the energyE of the small system fluctuates, and i
statistics obey the canonical ensemble at temperatureT1. In
~ii !, the energy of the system is fixed at a particular val
This energyE is a stochastic variable, and its distribution
given by the canonical ensemble at temperatureT1, as long
as the removal of the thermal contact with the heat bath
sufficiently gentle@2#. In ~iii !, the energy of the small system
changes in such a manner that the phase volume enclose
a constant energy surface,J(E,a), @see Eq.~22! in the text#
is invariant. This follows from the ergodic invariant theore
@3#. With the exception of those systems for whichJ(E,a)
has a special functional property, the statistical distribut
of E at the end of this adiabatic process is no longer con
tent with the canonical ensemble atany temperature. In~iv!,
this noncanonical distribution of the energy relaxesirrevers-
ibly ~in the ordinary sense! to the canonical distribution a
the temperatureT2, whether or not, on statistical average, t
©2002 The American Physical Society19-1
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FIG. 1. The process
$T1 ,a1 ;T2 ,a2% is schematically
depicted as (i)⇒(ii) ⇒(iii) ⇒(iv).
The gray boxes represent the he
baths at the temperatures indicate
therein, and the circles represe
the small system. The thick solid
lines in ~i! and ~iv! denote the
thermal contact between the sma
system and the two heat baths.
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net energy transfer between the system and the heat ba
zero. We note that the essential feature distinguishing sm
systems from macroscopic systems is the distortion of
energy distribution in~iii !, which can be neglected in mac
roscopic thermodynamics.

In the following sections we prove the above statem
with an argument based on the ergodicity hypothesis
Hamiltonian dynamical systems. The outline of the proof
as follows. In Sec. II we prove the three lemmas as prep
tory steps for the main statement. In Sec. III we prove
main statement. In Sec. IV we discuss the physical mean
of the Statement. We also show there the necessary cond
for the process$T1 ,a1 ;T2 ,a2% to be reversible.

II. THREE LEMMAS

In order to prove the Statement, we first introduce th
lemmas.

Lemma 1—The entropyS ~see below! remains invariant
in the process~iii !.

Proof. We consider an ensemble of the mechanical sys
which is described by a time-dependent HamiltonianH. Let
us denote byP(G,t) the normalized distribution function o
the ensemble at timet, whereG is the phase coordinates o
the system, i.e., the position coordinates and the momen
the system. The entropyS is defined as, a functional of th
normalized distributionP,

S@P~•,t !#[2E
$G%

P~G,t !ln P~G,t !dG, ~1!

where the symbol$G% indicates that the integral is taken ov
the whole phase space.

Let us now examine the behavior of the entropyS with
time. First, we note that the time evolution of the distributi
function is described by the so-called Liouville’s equation

]P~G,t !

]t
52S ]

]q

]H~G,t !

]p
2

]

]p

]H~G,t !

]q D P~G,t !

[2
]

]G
@V(G,t)P~G,t !#,
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whereq andp are the position coordinates and the mome
of the system, respectively, and we have introduced here
velocity of the system point in the phase space,V(G,t) . The
velocity V(G,t) satisfies

]

]G
V(G,t)50, ~2!

which can be checked by the equation of motion of the m
chanical system.

Using Eq.~2!, we evaluate the time derivative of the e
tropy S,

]S@P~•,t !#

]t
52E

$G%

]P~G,t !

]t

d~x ln x!

dx U
x5P(G,t)

dG

5E
SG

V(G,t)P~G,t !ln P~G,t !dSG ,

where the symbolSG represents the surface integral over t
surface enclosing the phase space and we have used E~2!
and performed the integration by parts. As we are interes
in a mechanical system such that all particles are confine
a finite region in position space and that the Hamilton
involves the kinetic energy termsp2/2m, P(G,t) vanishes
at any point onS$G% . The lemma applies to the process~iii !,
since a quasistatic adiabatic process is realized by a ti
dependent Hamiltonian.

Lemma 2—A canonical distribution is the distribution to
maximize the entropyS subject to the constraint that th
ensemble average of the energy isE, i.e.,

E
$G%

H~G!P~G!dG5E, ~3!

where the canonical distribution characterized by the Ham
tonianH and the temperatureT is defined as

Pc~G;T,H ![
e2[H(G)]/T

Z~T,H !
, ~4!

with Z(T,H) being the normalization constant,

Z~T,H !5E
$G%

e2[H(G)]/TdG. ~5!
9-2
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Proof. Let us examine the difference between the ent
pies of two distributions, the canonical distributionPc and
any other distributionP, both being normalized and satisfy
ing the constraint condition~3!. We find

S@Pc#2S@P#5E
$G%

P~G!ln
P~G!

Pc~G!
dG, ~6!

where we have used Eq.~4! and the conditions

E
$G%

Pc~G!dG5E
$G%

P~G!dG51,

E
$G%

H~G!Pc~G!dG5E
$G%

H~G!P~G!dG5E.

We have written here the canonical distribution asPc(G) for
the simplicity of notation, though precisely it implie
Pc(G;T,H) in our notation. The right-hand side of Eq.~6! is
known as therelative entropyand has been known to b
non-negative, as we easily demonstrate as follows:

E
$G%

P~G!ln
P~G!

Pc~G!
dG

5E
$G%

P~G!ln
P~G!

Pc~G!
dG2E

$G%
@P~G!2Pc~G!#dG

5E
$G%

Pc~G!S P~G!

Pc~G!
ln

P~G!

Pc~G!
2

P~G!

Pc~G!
11DdG>0.

~7!

The inequality in the last line follows from the fact th
x ln x2x11>0 for x>0. The equality holds if and only if
x51, so that only the canonical distribution realizes t
maximum value ofS. Thus the lemma is proved.

Lemma 3—Let ^H& (T,H) be the ensemble average of th
HamiltonianH over the canonical distributionPc(G;T,H).
~Hereafter we shall denote, in general, the canonical ave
using the distributionPc(G;T,H) by ^•& (T,H) , that is, for an
arbitrary physical quantityA defined on the phase spac
^A& (T,H)[*$G%A(G)Pc(G;T,H)dG!. Then^H& (T,H) is mono-
tonically increasing withT. The entropyS@Pc(•;T,H)# is
also monotonically increasing withT.

Proof. Differentiating^H& (T,H) with respect toT, we ob-
tain

]^H& (T,H)

]T
5

^~H2^H& (T,H)!
2& (T,H)

T2
. ~8!

Since the value ofH is indeed distributed under the canon
cal distribution, the right-hand side of Eq.~8! is positive.

Likewise, differentiatingS@Pc(•;T,H)# with respect toT,
we obtain

]S@Pc~•;T,H !#

]T
5

1

T

]^H& (T,H)

]T
. ~9!
01611
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We note that the temperatureT is positive in most physica
situations. Indeed, for the Hamiltonian involving the kine
terms,T must be positive to satisfy the normalization cond
tion of the canonical distribution. Thus, the right-hand si
of Eq. ~9! is positive.

III. PROOF OF THE STATEMENT

Let us consider an ensemble of the small systems wh
Hamiltonian isHa , wherea is a parameter controlled from
the outside. We shall analyze the two processes for the
semble,$T1 ,a1 ;T2 ,a2% and its inverse$T2 ,a2 ;T1 ,a1% with
given the values of the temperatureT1 and parametersa1
anda2. A temperatureT2 is to be determined so that the he
bath of the temperatureT2 receives no energy from the en
semble of the small systems during the process~iv! of
$T1 ,a1 ;T2 ,a2%. First, we consider the proces
$T1 ,a1 ;T2 ,a2%. When detached from the heat bath of t
temperatureT1 @the process~ii !#, the ensemble is the canon
cal ensemble characterized byT1 and Ha1

. The ensemble

average of the energy,Ē1, is then given by

Ē15^Ha1
& (T1 ,Ha1

) . ~10!

When the parametera of the system is quasistaticall
changed along the process~iii !, the distribution of the sys-
tems, in general, changes. The final distribution is uniqu
determined by the adiabatic theorem.~We will not write
down the explicit form of the distribution, since our proo
does not depend on the concrete form of the distribution.! We
will write the distribution of the ensemble ata as
Pa(G;T1 ,Ha1

), whereT1 andHa1
are the arguments remind

ing us of the fact that the ensemble ata5a1 was the canoni-
cal ensemble withT1 andHa1

. By our definition,Pa at any
temperatureT and for any value ofa satisfies

Pa~G;T,Ha!5Pc~G;T,Ha!. ~11!

According to Lemma 1, the entropyS remains invariant
during the process~iii !,

S@Pa1
~•;T1 ,Ha1

!#5S@Pa2
~•;T1 ,Ha1

!#. ~12!

At the end of~iii ! the ensemble average of the energyĒ2 is
expressed as

Ē25E
$G%

Ha2
~G!Pa2

~G;T1 ,Ha1
!dG. ~13!

For the process~iv!, we choose the temperatureT2 so that
the average energy of the ensemble does not change upo
contact with the heat bath of the temperatureT2. It is because
our aim is to know whether or not the proce
$T1 ,a1 ;T2 ,a2% can be made reversible.T2 must, therefore,
satisfy

Ē25^Ha2
& (T2 ,Ha2

) . ~14!
9-3
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According to Lemma 2, the relations~13! and ~14! imply

S@Pa2
~•;T1 ,Ha1

!#<S@Pc~•;T2 ,Ha2
!#, ~15!

where the equality holds only if the ensemble at the end
~iii ! is the canonical ensemble. If our system is such that
canonical distribution is transformed into the canonical o
through the process~iii ! of $T1 ,a1 ;T2 ,a2%, then it is also
true for the process~iii ! of $T2 ,a2 ;T1 ,a1%, since ~iii ! is a
quasistatic adiabatic and is, therefore, reversible process

Next, we examine the process$T2 ,a2 ;T1 ,a1%. As above,
the process~iii ! yields the relation

S@Pa2
~•;T2 ,Ha2

!#5S@Pa1
~•;T2 ,Ha2

!#. ~16!

The ensemble average of the energy at the end of~iii !, Ē18 , is

Ē185E
$G%

Ha1
~G!Pa1

~G;T2 ,Ha2
!dG. ~17!

Now we ask if there is a nonzero flow of energy into the h
bath of the temperatureT1 at the end of~iii ! of the process
$T2 ,a2 ;T1 ,a1% when we put the ensemble in contact wi
that heat bath. To answer this we only need to compare
value of Ē18 with that of Ē1 since the contact with the hea
bath forces the ensemble to obey the canonical distribu
with the average energyĒ1. If Ē18.Ē1, then the positive

energy,Ē182Ē1, flows from the ensemble to the heat bath
To see if this is the case, it is convenient to introduce

temperatureT18 which satisfies

Ē185^Ha1
& (T

18 ,Ha1
) , ~18!

that is, we temporally introduce the canonical ensem
whose the ensemble energy is equal toĒ8. The Eqs.~17! and
~18! imply, with Lemma 2, that

S@Pa1
~•;T2 ,Ha2

!#<S@Pc~•;T18 ,Ha1
!#. ~19!

Combining Eqs.~12!, ~15!, ~16!, and ~19!, we arrive at the
inequality

S@Pc~•;T1 ,Ha1
!#<S@Pc~•;T18 ,Ha1

!#, ~20!

where we have used the property~11! of Pa . According to
Lemma 3, this inequality~20! implies

T1<T18

and

Ē1<Ē18 . ~21!

Thus we now complete the proof of the Statement: Given
temperatureT1 and the parametersa1 anda2, no matter what
we choose as the temperatureT2, the process$T1 ,a1 ;T2 ,a2%
or $T2 ,a2 ;T1 ,a1% generally requires some non-negative e
ergy to move from the ensemble of the small systems to
heat baths. The special case with no energy transfer is
01611
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reversible case as mentioned below in Eq.~15!, that is, the
only case that the canonical distribution form of the e
semble is preserved in the quasistatic adiabatic process~iii !.
We will discuss the condition for this to occur in the follow
ing section.

IV. DISCUSSION

We first note that the inequality~21! is fundamental in the
sense that if it were violated, we could construct a perpe
machine of the second kind with the following hypothetic
protocol.

~1! We start from an ensemble of the small systems
contact with a heat bath at temperatureT1.

~2! We detach these systemsgently from the heat bath,
and change the parametera from a1 to a2 quasistatically.
The work necessary to make this change isĒ22Ē1 per sys-
tem.

~3! We now fix the parametera at a2, and introduce the
interactions among these system. We assume that these
actions are sufficiently smaller than the systems energy,
at the same time large enough for the repartition of the
ergy within a certain time.

~4! We remove these interactions: the ensemble of
systems obeys the canonical distribution characterized byT2
and Ha2

. ~Note that we have not used any heat bath ot

than the initial one at the temperatureT1.!
~5! We then slowly change the parametera from a2 back

to a1. The required work here isĒ182Ē2.
~6! Finally, we close the cycle by bringing these sm

systems into contact with the heat bath at temperatureT1.
If the inequality (Ē22Ē1)1(Ē182Ē2),0 were to hold in

this cycle, we could obtain the positive workĒ12Ē18
through the cycle, where the only resource of the energ
the heat bath at temperatureT1.

Below we will derive briefly the condition that the cycl
of processes discussed above become reversible. This c
tion requires that the distribution remains to be the canon
one upon quasistatic adiabatic processes, see the para
below ~15!. The change of the distribution in those process
is governed by the adiabatic theorem@3#: If we denote byE1
andE2 the energy of the system before and after a quasist
adiabatic process, through which the parameter changes
a1 to a2, respectively, the ‘‘action’’J(E,a) defined by

J~E,a![E
$G%

u~E2Ha~G!!dG ~22!

satisfies the following relationship:

J~E1 ,a1!5J~E2 ,a2!. ~23!

Using Eq.~23! we can see how the energy distribution of t
system’s ensemble changes through such process. The
ergy distribution before the process,P(E1), is given by con-
struction as
9-4
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IRREVERSIBILITY RESULTING FROM CONTACT WITH . . . PHYSICAL REVIEW E66, 016119 ~2002!
P~E1!dE15
e2(E1)/(T1)

Z~T1 ,Ha1
!
W~E1 ,a1!dE1 ,

whereZ has been defined below~5! andW(E,a) is defined
by W(E,a)[@]J(E,a)#/]E. Noting that Eq.~23! and the
above definition ofW(E,a) give

W~E1 ,a1!dE15W~E2 ,a2!dE2 ,

the energy distribution after the process,P8(E2) is given as

P8~E2!dE25
e2E1 /T1

Z~T1 ,Ha1
!
W~E2 ,a2!dE2 .

This distribution corresponds to the canonical one at so
temperature, sayT2, if and only if

E1

T1
5

E2

T2

is satisfied. Thus, we reach the condition for the reversibil
the adiabatic theorem~23! applied for a quasistatic adiabat
process of the system should yield the relationship

E25f~a1 ,a2!E1 ~24!

with f(a1 ,a2) being a function of the parameter values b
fore and after the process.

An example of the systems satisfying Eq.~24! is a har-
monic oscillator with the Hamiltonian,Ha5p2/21aq2/2.
When the spring constanta is changed quasistatically, th
process$T1 ,a1 ;T2 ,a2% is reversible. By constrast, an ex
ample that does not satisfy Eq.~24! is given by the following
Hamiltonian:

Ha5p2/21expH uqu
a J .

The proof, not shown here, is easy.
Our proof of Eq.~21! is for the systems obeying classic

dynamics. After our work, H. Tasaki has shown that ess
tially the same mechanism of irreversibility is found for th
systems obeying quantum mechanics@4#. There, the proof
has been done, just we did here, using the fact that the
nonical ensemble realizes the maximum entropy am
those ensembles with the same average energy. We coul
that it is this property of the canonical ensemble that lead
the inequality~21!.

In order to obtain a deeper physical insight of the inequ
ity ~21!, let us compare the system that consists of infinit
many small subsystems connected among each other
the system of the ensemble of mutually isolated small s
tems. We shall call these two systems the ‘‘connected s
tem’’ and the ‘‘disconnected system,’’ respectively. As t
former system is macroscopic, we can apply to it the or
nary thermodynamics and therefore the proc
$T1 ,a1 ;T2 ,a2% can be made reversible for such system.
assure it we must assume that the interaction energy assi
to the coupling among the small subsystems is assumed
ignorably small while it is effective enough to attain the the
01611
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mal equilibrium of the whole connected system. Under t
assumption we can prove~not shown! that the energy distri-
bution of the small subsystems belonging to the connec
system remains to be the canonical one throughout the
cess~iii !.

Furthermore the entropy related to this distribution, who
definition has been given in Eq.~1!, is conserved during the
process~iii !, as we can show easily by using the fact that t
distribution is kept to be canonical throughout this proce
That is, along the process~iii ! the canonical distribution
Pc(G;T̃,Ha) of the connected system at the parameter va
a satisfies the following relationship:

S@Pc~•;T1 ,Ha1
!#5S@Pc~•;T̃,Ha!#.

This equality combined with Lemma 2 implies that, at a
point along the process~iii !, the average energy of the sma
systems in the disconnected system is generally not sm
than the average energy of the small subsystems in the
nected system~see Fig. 2 for the schematic illustration!. This
figure gives us the intuitive picture that the irreversibility
the disconnected system is caused by its excess energ
reference to the connective system which is reversible.

It is a future topic of investigation to determine if we ca
construct a thermodynamic framework of small systems t
can describe adiabatic processes as well as isothermal
cesses for systems in contact with heat baths. Our res
imply that, in such framework, if there exists a thermod
namic function whose difference calculated with respect
two states is the quasistatic adiabatic workĒ22Ē1, then it
cannot be the case that this function depends on onlyT and
a. ~This is in contrast to the case of isothermal processes
a small system in contact with a heat bath. For such p

FIG. 2. Thick solid curves: The average energy of the sm

system,Ē, as a function of the parametera, along quasistatic adia
batic processes. The arrows indicate the direction of the proce
Dotted curves: The energy of the combined system per constit
small system along quasistatic adiabatic processes. At each ext
point of the curves, the value of the average energy is indicated
the corresponding temperature of the canonical ensemble. Fo

ample,T18 indicates thatĒ5^Ha1
& (T

18 ,Ha1
) . At the point indicated by

T2, the upper solid curve and the upper dotted curve are tang
and at the point indicated byT1, the lower solid curve and the lowe
dotted curve are tangent.
9-5
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SATO, SEKIMOTO, HONDOU, AND TAKAGI PHYSICAL REVIEW E66, 016119 ~2002!
cesses, using the formalism of stochastic energetics@5–7# it
has been shown that the Helmholtz free energy can be
to determine the work necessary to move between two st
by changing the value ofa sufficiently slowly so that the
small system evolves quasistatically.!

To construct the thermodynamic framework of a sm
system, it is desirable to find a method of characterizing
terms of work the process through which the distributi
changes from a noncanonical formPa2

(•;T1 ,Ha1
) to the ca-

nonical formPc(•;T2 ,Ha2
). If this is possible, it is natural to

expect that the maximum of such extracted work to
T2(S@Pc(•;T2 ,Ha2

)#2S@Pa2
(•;T1 ,Ha1

)#) @see Eq. ~15!#.

In any case, the quantityS@Pc(•;T2 ,Ha2
)#2S@Pa2
,

n
in

ca

01611
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e

(•;T1,Ha1
)# is a strong measure of the distance from the c

responding reversible process since this is nonvanishing
less the functionsPa2

(•;T1 ,Ha1
) and Pc(•;T2 ,Ha2

) are
identical.
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